首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
  国内免费   3篇
  2023年   1篇
  2022年   3篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   36篇
  2012年   17篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1983年   6篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
61.
In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation 1-8. Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors 9. Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 10.  相似文献   
62.
The postembryonic development of the bony cephalic skeleton in the common sole Solea solea , observed from hatching to the juvenile stage or postmetamorphic larva, appears to follow a similar chronological order to that observed in other Pleuronectiformes and Perciformes and the sequence in bone formation is a response to functional demands. At hatching, S. solea has no bony structure. On day 4, only the outlines of maxillaries and opercular bones are visible. On day 6, a thin parasphenoid appears between the orbits and isolates the braincase from the buccal cavity making food ingestion possible without any impact on the brain. On day 8, the dentaries form and two small preopercular bones appear on each side of the head. On day 9, at weaning from the yolk sac, branchial arches support the gill filaments (used for respiration and trapping phytoplankton which pass through the open mouth). On day 10, the premaxillaries develop in front of the maxillaries. The superimposing of the maxillaries and the premaxillaries is a typical feature of species possessing an acanthopterygian protractile mouth at the adult stage. On day 12, the frontals develop above the orbits and the set of opercular bones is complete. On day 18, the migration of the left eye begins. On day 20, the left eye has moved to the median crest of the head. On day 23, both eyes are located on the same side. On day 26, the braincase is formed by a basioccipital, exoccipitals, pterotics, sphenotics and a supraoccipital. On day 50, new structures have appeared, others have developed and have undergone an extensive remodeling due to metamorphosis.  相似文献   
63.
A technique to investigate the properties and performance of new multi-electron metal/air battery systems is proposed and presented. A method for synthesizing nanoscopic VB2 is presented as well as step-by-step procedure for applying a zirconium oxide coating to the VB2 particles for stabilization upon discharge. The process for disassembling existing zinc/air cells is shown, in addition construction of the new working electrode to replace the conventional zinc/air cell anode with a the nanoscopic VB2 anode. Finally, discharge of the completed VB2/air battery is reported. We show that using the zinc/air cell as a test bed is useful to provide a consistent configuration to study the performance of the high-energy high capacity nanoscopic VB2 anode.  相似文献   
64.
Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting1-4 (extrusion, dip pen and soft lithography), contactless bioprinting5-7 (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization8. It can be used for many applications such as tissue engineering9-13, biosensor microfabrication14-16 and as a tool to answer basic biological questions such as influences of co-culturing of different cell types17. Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches.Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions18. This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an epi-fluorescence microscope.  相似文献   
65.
Arginine has been considered as the most potent nutraceutics discovered ever, due to its powerful healing property, and it's been known to scientists as the Miracle Molecule. Arginine detection in fermented food products is necessary because, high level of arginine in foods forms ethyl carbamate (EC) during the fermentation process. Therefore, L-arginine detection in fermented food products is very important as a control measure for quality of fermented foods, food supplements and beverages including wine. In clinical analysis arginine detection is important due to their enormous inherent versatility in various metabolic pathways, topmost in the synthesis of Nitric oxide (NO) and tumor growth. A number of methods are being used for arginine detection, but biosensors technique holds prime position due to rapid response, high sensitivity and high specificity. However, there are many problems still to be addressed, including selectivity, real time analysis and interference of urea presence in the sample. In the present review we aim to emphasize the significant role of arginine in human physiology and foods. A small attempt has been made to discuss the various techniques used for development of arginine biosensor and how these techniques affect their performance. The choice of transducers for arginine biosensor ranges from optical, pH sensing, ammonia gas sensing, ammonium ion-selective, conductometric and amperometric electrodes because ammonia is formed as a final product.  相似文献   
66.
Survival through periods of resource scarcity depends on the balance between metabolic demands and energy storage. The opposing effects of predation and starvation mortality are predicted to result in trade‐offs between traits that optimize fitness during periods of resource plenty (e.g., during the growing season) and those that optimize fitness during periods of resource scarcity (e.g., during the winter). We conducted a common environment experiment with two genetically distinct strains of rainbow trout to investigate trade‐offs due to (1) the balance of growth and predation risk related to foraging rate during the growing season and (2) the allocation of energy to body size prior to the winter. Fry (age 0) from both strains were stocked into replicate natural lakes at low and high elevation that differed in winter duration (i.e., ice cover) by 59 days. Overwinter survival was lowest in the high‐elevation lakes for both strains. Activity rate and growth rate were highest at high elevation, but growing season survival did not differ between strains or between environments. Hence, we did not observe a trade‐off between growth and predation risk related to foraging rate. Growth rate also differed significantly between the strains across both environments, which suggests that growth rate is involved in local adaptation. There was not, however, a difference between strains or between environments in energy storage. Hence, we did not observe a trade‐off between growth and storage. Our findings suggest that intrinsic metabolic rate, which affects a trade‐off between growth rate and overwinter survival, may influence local adaptation in organisms that experience particularly harsh winter conditions (e.g., extended periods trapped beneath the ice in high‐elevation lakes) in some parts of their range.  相似文献   
67.
目的:分析CAPD患者家属的心理需求,并对其采取相应的护理对策。方法:采取自行设计问卷调查方法,对100例CAPD患者家属的心理需求调查分析。结果:患者家属的心理需求包括:能知道患者治疗方法,希望知道如何协助患者进行治疗,希望出院后遇到治疗操作中的问题能及时得到指导和解决,能定时家庭访问。结论:通过对患者家属的心理需求实施护理对策,满足其心理需求,使其主动参与协作患者治疗及护理,对提高患者的生活质量和生存率起至关重要的作用。  相似文献   
68.
Tumor extracellular matrix has abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. In this work, we demonstrated effective MR cancer molecular imaging with a small molecular peptide targeted Gd-DOTA monoamide complex as a targeted MRI contrast agent specific to clotted plasma proteins in tumor stroma. We performed the experiment of evaluating the effectiveness of the agent for non-invasive detection of prostate tumor with MRI in a mouse orthotopic PC-3 prostate cancer model. The targeted contrast agent was effective to produce significant tumor contrast enhancement at a low dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for MR molecular imaging of prostate tumor.  相似文献   
69.
70.
Methods for rapid surface immobilization of bioactive small molecules with control over orientation and immobilization density are highly desirable for biosensor and microarray applications. In this Study, we use a highly efficient covalent bioorthogonal [4+2] cycloaddition reaction between trans-cyclooctene (TCO) and 1,2,4,5-tetrazine (Tz) to enable the microfluidic immobilization of TCO/Tz-derivatized molecules. We monitor the process in real-time under continuous flow conditions using surface plasmon resonance (SPR). To enable reversible immobilization and extend the experimental range of the sensor surface, we combine a non-covalent antigen-antibody capture component with the cycloaddition reaction. By alternately presenting TCO or Tz moieties to the sensor surface, multiple capture-cycloaddition processes are now possible on one sensor surface for on-chip assembly and interaction studies of a variety of multi-component structures. We illustrate this method with two different immobilization experiments on a biosensor chip; a small molecule, AP1497 that binds FK506-binding protein 12 (FKBP12); and the same small molecule as part of an immobilized and in situ-functionalized nanoparticle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号